【24h】

Finding Baby Mothers on Twitter

机译:在推特上找到婴儿妈妈

获取原文

摘要

In this paper, we study the task of detecting mothers of babies on Twitter. This could be beneficial for baby mother users to find friends, and for companies, organizations or experts to deliver accurately targeted information. Prior works have proposed supervised classification methods to detect generic latent attributes of Twitter users such as age, gender, and political orientation. However, methods and features for classifying generic attributes do not perform well for more specific attributes, such as whether a user is a mother of a young baby. We design feature sets based on followed accounts and profile pictures, which are largely overlooked in existing work. Comparing to three established feature sets, the experimental evaluation shows that our specifically-designed feature sets considerably improve classification accuracy.
机译:在本文中,我们研究了在Twitter上检测婴儿母亲的任务。这可能对婴儿妈妈用户找到朋友以及对公司,组织或专家提供准确针对性的信息都是有益的。先前的工作提出了监督分类方法,以检测Twitter用户的通用潜在属性,例如年龄,性别和政治倾向。但是,用于分类通用属性的方法和功能对于更特定的属性(例如,用户是否是婴儿的母亲)效果不佳。我们基于跟踪的帐户和个人资料图片设计功能集,而现有工作在很大程度上忽略了这些功能。与三个已建立的特征集相比,实验评估表明,我们专门设计的特征集大大提高了分类准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号