首页> 外文会议>International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII >A Blood Pressure Monitoring Device with Tactile and Tension Sensors Assisted by a Machine Learning Technique
【24h】

A Blood Pressure Monitoring Device with Tactile and Tension Sensors Assisted by a Machine Learning Technique

机译:机器学习技术辅助的带触觉和张力传感器的血压监测装置

获取原文

摘要

This work presents the development of a continuous blood pulse-wave monitoring system with a highly sensitive tactile sensing array and tension sensor. The key element of the sensing device is a conductive polymer film that is patterned with microdome structures to enhance pressure sensitivity. The proposed array-type configuration greatly facilitates the measurement of blood pulse waves. In addition, the tension sensor, which detects the strap tension during pulse wave measurement, is capable of estimating the optimal conditions for measuring high-quality blood pulse waves. Furthermore, a machine-learning algorithm, the support vector regression, is employed for estimating the systolic blood pressure (SBP) and diastolic blood pressure (DBP) from the measured pulse-wave signals. The R
机译:这项工作提出了具有高度灵敏的触觉感应阵列和张力传感器的连续脉搏波监测系统的开发。传感设备的关键元件是导电聚合物薄膜,该薄膜上带有微球罩结构,可以增强压力敏感性。所提出的阵列型配置极大地方便了脉搏波的测量。另外,在脉搏波测量过程中检测皮带张力的张力传感器能够估算出用于测量高质量脉搏波的最佳条件。此外,采用机器学习算法(支持向量回归)从测得的脉搏波信号中估算收缩压(SBP)和舒张压(DBP)。 R

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号