【24h】

On Applicability of Fixed-Size Moving Windows for ANN-Based Effort Estimation

机译:基于ANN的工作量估计的固定大小移动窗口的适用性

获取原文

摘要

BACKGROUND: Several studies in software effort estimation have found that it can be effective to use a window of recent projects as training data for building an effort estimation model. The generality of the windowing approach still remains uncertain across the variety of effort estimation approaches that are based on different theory. Recent studies have focused on the use of windows with effort estimation models based on a machine learning approach, which could make better estimates than conventional linear regression. OBJECTIVE: To investigate the effect of using a window on estimation accuracy with a machine learning-based method, Artificial Neural Networks (ANN). ANN was recently found as a popular and good performance method, and is based on a different theory from other Machine Learning-based methods used in past studies. METHOD: Using a single-company ISBSG dataset studied previously in similar research, we examine the effect of using a fixed-size windowing policy on the accuracy of estimates using ANN. RESULTS: There is a difference in the estimation accuracy between using a window and not using a window. Using windows of 50 to 120 projects reduced mean absolute errors by 5-7%. The effective range of window sizes was different from previous studies. CONCLUSIONS: Windowing significantly improves estimation accuracy with ANN. The results support past studies, in that the effective window sizes were different among estimation models. The results contribute to understanding characteristics of the windowing approach.
机译:背景技术在软件工作量估算中的一些研究发现,将最近的项目窗口用作构建工作量估算模型的训练数据可能是有效的。在基于不同理论的各种努力估计方法中,开窗方法的通用性仍然不确定。最近的研究集中在将窗口与基于机器学习方法的工作量估计模型一起使用时,可以比传统的线性回归更好地进行估计。目的:研究基于机器学习的方法人工神经网络(ANN)使用窗口对估计精度的影响。最近发现ANN是一种流行且性能良好的方法,它基于与过去研究中使用的其他基于机器学习的方法不同的理论。方法:使用以前在类似研究中研究过的单一公司ISBSG数据集,我们研究了使用固定大小的窗口化策略对使用ANN进行估计的准确性的影响。结果:使用窗口与不使用窗口之间的估计精度有所不同。使用50到120个项目的窗口将平均绝对误差降低了5-7%。窗口大小的有效范围与以前的研究不同。结论:加窗大大提高了人工神经网络的估计精度。结果支持过去的研究,因为有效窗口大小在估计模型之间是不同的。结果有助于理解加窗方法的特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号