【24h】

A Fuzzy time-series prediction model with multi-biological data for health management

机译:具有多种生物学数据的健康管理的模糊时间序列预测模型

获取原文

摘要

This paper proposes a body weight prediction method using Fuzzy prediction model. Fuzzy prediction model is constructed by an autoregressive (AR) model based on body weight data and linear prediction models based on biological data. The biological data are obtained by pedometers such as number of steps, calorie consumption and so on. The Fuzzy prediction model is fixed by solving Yule-Walker equation and minimizing the Akaike's Information Criterion. In our experiment, the model predicts body weight change for next p days where p is the order of AR model. Then, four linear prediction models related to the biological data are constructed by linear regression analysis. We make a fuzzy membership function based on mean absolute error between body weight data and predicted value of each prediction model. Furthermore, these models are optimized for each subject in prediction models which add the biological data to AR model based on the mean absolute error. We employed 452 volunteers, and collected their body weight time-series data and the biological data during 730 days. We use these data from 1st to 365th day as learning data to determine the Fuzzy prediction model. As the result, the Fuzzy prediction model obtained higher correlation coefficient between predicted and truth values than the AR model on most subjects. In addition, the Fuzzy prediction model obtained smaller mean absolute prediction error than the AR model.
机译:提出了一种基于模糊预测模型的体重预测方法。模糊预测模型由基于体重数据的自回归(AR)模型和基于生物数据的线性预测模型构成。生物数据是通过计步器获得的,例如步数,卡路里消耗等。通过预测Yule-Walker方程并最小化Akaike的信息准则来固定模糊预测模型。在我们的实验中,该模型可以预测接下来p天的体重变化,其中p是AR模型的阶数。然后,通过线性回归分析构建与生物学数据有关的四个线性预测模型。我们基于体重数据和每个预测模型的预测值之间的平均绝对误差来制作模糊隶属函数。此外,这些模型针对预测模型进行了优化,这些模型基于平均绝对误差将生物数据添加到AR模型中。我们雇用了452名志愿者,并在730天内收集了他们的体重时间序列数据和生物学数据。我们将这些数据从第1天到第365天作为学习数据来确定模糊预测模型。结果,在大多数对象上,模糊预测模型获得的预测值与真实值之间的相关系数高于AR模型。另外,与AR模型相比,模糊预测模型获得的平均绝对预测误差更小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号