首页> 外文会议>International Conference on Soft-computing and Network Security >Enhanced Image Edge Detection Methods for Crab Species Identification
【24h】

Enhanced Image Edge Detection Methods for Crab Species Identification

机译:增强的图像边缘检测方法用于蟹类鉴定

获取原文

摘要

Automatic Image Analysis, Image Classification, Automatic Object Recognition are some of the aspiring research areas in various fields of Engineering. Many Industrial and biological applications demand Image Analysis and Image Classification. Sample images available for classification may be complex, image data may be inadequate or component regions in the image may have poor visibility. With the available information each Digital Image Processing application has to analyze, classify and recognize the objects appropriately. Pre-processing, Image segmentation, feature extraction and classification are the most common steps to follow for Classification of Images. In this study we applied various existing edge detection methods like Robert, Sobel, Prewitt, Canny, Otsu and Laplacian of Guassian to crab images. From the conducted analysis of all edge detection operators, it is observed that Sobel, Prewitt, Robert operators are ideal for enhancement. The paper proposes Enhanced Sobel operator, Enhanced Prewitt operator and Enhanced Robert operator using morphological operations and masking. The novelty of the proposed approach is that it gives thick edges to the crab images and removes spurious edges with help of m-connectivity. Parameters which measure the accuracy of the results are employed to compare the existing edge detection operators with proposed edge detection operators. This approach shows better results than existing edge detection operators.
机译:自动图像分析,图像分类,自动对象识别是各个工程领域中一些有抱负的研究领域。许多工业和生物应用都需要图像分析和图像分类。可用于分类的样本图像可能很复杂,图像数据可能不足,或者图像中的组成区域可见度很差。利用可用的信息,每个数字图像处理应用程序都必须适当地分析,分类和识别对象。预处理,图像分割,特征提取和分类是图像分类的最常见步骤。在这项研究中,我们将各种现有的边缘检测方法(例如Robert,Sobel,Prewitt,Canny,Otsu和Guassian的Laassian of Guassian)应用于螃蟹图像。通过对所有边缘检测算子的分析,可以发现Sobel,Prewitt,Robert算子是增强的理想选择。本文提出了使用形态学运算和掩蔽的增强型Sobel算子,增强型Prewitt算子和增强型Robert算子。所提出的方法的新颖性在于,它为螃蟹图像提供了较粗的边缘,并借助m连接性去除了伪造的边缘。使用测量结果准确性的参数将现有的边缘检测算子与建议的边缘检测算子进行比较。这种方法显示出比现有边缘检测算子更好的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号