首页> 外文会议>International Conference on Smart Systems and Data Science >An Empirical Study of Deep Neural Networks Models for Sentiment Classification on Movie Reviews
【24h】

An Empirical Study of Deep Neural Networks Models for Sentiment Classification on Movie Reviews

机译:电影评论情感分类的深度神经网络模型的实证研究

获取原文

摘要

Sentiment classification is one of the new absorbing parts appeared in natural language processing with the emergence of community sites on the web. Taking advantage of the amount of information now available, research and industry have been seeking ways to automatically analyze the sentiments expressed in texts. The challenge for this task is the human language ambiguity, and also the lack of labeled data. In order to solve this issue, Deep learning models appeared to be effective due to their automatic learning capability. In this paper, we provide a comparative study on IMDB movie review dataset, we compare word embeddings methods and further deep learning models on sentiment analysis and give broad empirical outcomes for those keen on taking advantage of deep learning for sentiment analysis in real-world settings.
机译:随着网络社区站点的出现,情感分类是自然语言处理中出现的新的吸引人的部分之一。利用目前可用的信息量,研究和工业界一直在寻找自动分析文本表达的情感的方法。这项任务面临的挑战是人类语言的歧义性,以及缺少标签数据。为了解决这个问题,深度学习模型由于具有自动学习功能而显得很有效。在本文中,我们对IMDB电影评论数据集进行了比较研究,比较了词嵌入方法和深度学习模型在情感分析方面的优势,并为那些热衷于在实际环境中利用深度学习进行情感分析的人们提供了广泛的经验结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号