首页> 外文会议>International Conference on Smart Computing Communications >Road Accident Analysis and Prediction of Accident Severity by Using Machine Learning in Bangladesh
【24h】

Road Accident Analysis and Prediction of Accident Severity by Using Machine Learning in Bangladesh

机译:孟加拉国使用机器学习进行道路交通事故分析和事故严重性预测

获取原文

摘要

In recent years, the road accident has become a global problem and marked as the ninth prominent cause of death in the world. Due to the enormous number of road accidents every year, it has become a major problem in Bangladesh. It is entirely inadmissible and saddening to allow its citizen to kill by road accidents. Consequently, to handle this overwhelmed situation, a precise analysis is required. This research paper has been done to analyze traffic accidents more deeply to determine the intensity of accidents by using machine learning approaches in Bangladesh. We also figure out those significant factors that have a clear effect on road accidents and provide some beneficent suggestions regarding this issue. Analysis has been done, by using Decision Tree, K-Nearest Neighbors (KNN), Naïve Bayes and AdaBoost these four supervised learning techniques, to classify the severity of accidents into Fatal, Grievous, Simple Injury and Motor Collision these four categories. Finally, the best performance is achieved by AdaBoost.
机译:近年来,道路交通事故已成为全球性问题,已成为世界上第九大死亡原因。由于每年发生的道路交通事故数量巨大,这已成为孟加拉国的主要问题。允许其公民因交通事故致死是完全不可接受的,令人伤心。因此,为了处理这种不堪重负的情况,需要进行精确的分析。该研究论文已经进行了更深入的分析,以通过使用机器学习方法在孟加拉国确定交通事故的强度。我们还将找出对道路交通事故有明显影响的重要因素,并就此问题提供一些有益的建议。通过使用决策树,K最近邻(KNN),朴素贝叶斯和AdaBoost这四种监督学习技术进行了分析,将事故的严重程度分为致命,严重,简单伤害和运动碰撞这四个类别。最后,AdaBoost可以实现最佳性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号