首页> 外文会议>International Conference on Smart Computing and Electronic Enterprise >Personalized News Recommendation based on Multi-agent framework using Social Media Preferences
【24h】

Personalized News Recommendation based on Multi-agent framework using Social Media Preferences

机译:使用社交媒体首选项的基于多代理框架的个性化新闻推荐

获取原文

摘要

Staying updated about global events is a necessity for the modern day man. Many sources for latest news are available on the web, and individuals can make use of their favorite news source to get the daily news, but most of the time they are unable to get the news of desired interest. There is a need to analyze the news and rank them according to user's interest. Social media can provide an insight on a user's likes and dislikes, which used for news recommendation. This paper presents a multi-agent framework [1] that uses a novel methodology for ranking news articles on the basis of user's interests fetched from social media [2]. To do so, we have modeled the relationship between user's social media preferences and news categories: we have extracted categories from social media, mapped with general news categories. Our developed solution provides 28% better results than current news websites recommendation. Further experimentations show that our solution provides effective news recommendation as it makes use of the user's social media profile [3], which always updated and maintained by the user firsthand. Another important objective is to increase positivity in one's life. These days the world is in turmoil due to terrorism activities [4].These activities naturally attract media coverage, presenting an unpleasant view of various regions of the world. Although there are many good things/activities happening around us, we mostly see violence and hate speech everywhere on the web [5]. Sentiment analysis is a technique used to extract the impact of the statement i.e. weather the statement is positive or negative [6], [7], and [8]. Sentiment analysis used to filter news based on harmful negative activities and displaying positive news of latest inventions in world, advancement in the industry, relief packages from governments and other growth opportunities. Based on these ideas, we have developed an android application and performed a pilot study. Our results show higher satisfaction levels for users when searching news articles through the proposed system.
机译:对于当今的人来说,必须及时了解全球事件。 Web上有许多最新新闻资源,个人可以利用自己喜欢的新闻资源获取每日新闻,但是大多数时候他们无法获得所需的新闻。需要分析新闻并根据用户的兴趣对其进行排名。社交媒体可以提供关于用户喜好的见解,用于新闻推荐。本文提出了一个多主体框架[1],该框架使用一种新颖的方法根据从社交媒体[2]获取的用户兴趣对新闻文章进行排名。为此,我们对用户的社交媒体偏好和新闻类别之间的关系进行了建模:我们从社交媒体中提取了类别,并映射了常规新闻类别。我们开发的解决方案提供的结果比当前新闻网站的推荐结果高出28%。进一步的实验表明,我们的解决方案利用用户的社交媒体资料[3]来提供有效的新闻推荐,该资料始终由用户直接更新和维护。另一个重要的目标是提高生活中的积极性。如今,由于恐怖主义活动,世界处于动荡之中[4]。这些活动自然会吸引媒体报道,对世界各地区产生令人不快的看法。尽管我们周围发生着许多美好的事情/活动,但我们在网络上到处都可以看到暴力和仇恨言论[5]。情感分析是一种用于提取陈述影响的技术,即天气陈述是正面还是负面[6],[7]和[8]。情绪分析用于根据有害的负面活动过滤新闻,并显示有关世界上最新发明,行业进步,政府提供的救济措施以及其他增长机会的正面新闻。基于这些想法,我们开发了一个android应用程序并进行了初步研究。我们的结果表明,通过建议的系统搜索新闻文章时,用户的满意度更高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号