首页> 外文会议>International Conference on Pattern Analysis and Intelligent Systems >Using A Real-coded Genetic Algorithm to Predict Characterization Parameters for Petroleum Fraction
【24h】

Using A Real-coded Genetic Algorithm to Predict Characterization Parameters for Petroleum Fraction

机译:使用实数编码遗传算法预测石油馏分的表征参数

获取原文

摘要

In this paper, an efficient real-coded genetic algorithm (RCGA) for process optimization is developed to build new correlations to estimate properties of petroleum. This equation is a function of two input parameters that can be easily obtained. Moreover, an available data bank was used to develop the correlations using optimization. general experiment results reveal that the proposed RCGA is simple to use and provides a significantly faster convergence speed and much better search performance than comparative methods. The results of the proposed models are compared to others recommended in literature that have had large acceptance in the oil industry. The comparison results indicate that the proposed model is more precise than the most common models for characterizing petroleum fractions.
机译:在本文中,开发了一种用于过程优化的有效实编码遗传算法(RCGA),以建立新的相关性以估计石油的性质。该方程式是可以轻松获得的两个输入参数的函数。此外,可用的数据库被用于使用优化来发展相关性。常规实验结果表明,与比较方法相比,所提出的RCGA使用简单,收敛速度明显加快,搜索性能也更好。所提出的模型的结果与文献中推荐的其他模型进行了比较,这些文献在石油工业中已被广泛接受。比较结果表明,提出的模型比最常用的石油馏分模型更精确。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号