首页> 外文会议>International Conference on Parallel Computing Technologies >Data-Parallel Computational Model for Next Generation Sequencing on Commodity Clusters
【24h】

Data-Parallel Computational Model for Next Generation Sequencing on Commodity Clusters

机译:商品集群上下一代测序的数据并行计算模型

获取原文

摘要

It is obvious that the next generation sequencing (NGS) technologies, are poised to be the next big revolution in personalized healthcare, and caused the amount of available sequencing data growing exponentially. While NGS data processing has become a major challenge for individual genomic research, commodity computers as a cost-effective platform for distributed and parallel processing in laboratories can help processing such huge volume of data. To deploy sequence-processing methods on these platforms, in this paper we present a parallel computational model for BLAST on commodity clusters that works in a data parallel manner. The suggested model has a master-worker paradigm. The master stores temporarily incoming requests and splits the database to chunks according to the number of available workers. Each worker pulls, formats, and searches queries against a unique chunk of the database. To show that our model works well, we used queries with different lengths to search against a small database (i.e. UniProtKB/SWISS-PROT) and a large database (i.e. UniProtKB/TrEMBL). The results were equal with the output of the golden method (i.e. NCB1 BLAST) and the performance of our model outperformed the most popular distributed form of BLAST (i.e. mpi-BLAST) with 25% higher performance.
机译:显而易见,下一代测序(NGS)技术有望成为个性化医疗领域的下一个重大革命,并导致可用测序数据量呈指数增长。尽管NGS数据处理已成为单个基因组研究的主要挑战,但商用计算机作为实验室中分布式和并行处理的经济高效平台,可以帮助处理如此大量的数据。为了在这些平台上部署序列处理方法,在本文中,我们提出了商品群上BLAST的并行计算模型,该模型以数据并行方式工作。建议的模型具有主工人范式。主服务器临时存储传入的请求,并根据可用工作程序的数量将数据库拆分为多个块。每个工作人员针对数据库的唯一块提取,格式化和搜索查询。为了证明我们的模型效果很好,我们使用了不同长度的查询来搜索小型数据库(即UniProtKB / SWISS-PROT)和大型数据库(即UniProtKB / TrEMBL)。结果与黄金方法(即NCB1 BLAST)的输出相同,并且我们模型的性能优于BLAST最受欢迎的分布式形式(即mpi-BLAST),性能提高了25%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号