首页> 外文会议>International Conference on Medical Image Computing and Computer-Assisted Intervention >Learning-Based X-Ray Image Denoising Utilizing Model-Based Image Simulations
【24h】

Learning-Based X-Ray Image Denoising Utilizing Model-Based Image Simulations

机译:利用基于模型的图像模拟进行基于学习的X射线图像降噪

获取原文

摘要

X-ray guidance is an integral part of interventional procedures, but the exposure to ionizing radiation poses a non-negligible threat to patients and clinical staff. Unfortunately, a reduction in the X-ray dose results in a lower signal-to-noise ratio, which may impair the quality of X-ray images. To ensure an acceptable image quality while keeping the X-ray dose as low as possible, it is common practice to use denoising techniques. However, at very low dose levels, the application of conventional denoising techniques may lead to undesirable artifacts or oversmoothing. On the other hand, supervised learning techniques have outperformed conventional techniques in producing suitable results, provided aligned pairs of associated high- and low-dose X-ray images are available. Unfortunately, it is neither acceptable nor possible to acquire such image pairs during a clinical intervention. To enable the use of learning-based methods for the denoising of X-ray images, we propose a novel strategy that involves the use of model-based simulations of low-dose X-ray images during the training phase. We utilize a data-driven normalization step that increases the robustness of the proposed approach to varying amounts of signal-dependent noise associated with different X-ray image acquisition protocols. A quantitative and qualitative analysis based on clinical and phantom data shows that the proposed strategy outperforms well-established conventional X-ray image denoising methods. It also indicates that the proposed approach allows for a significant dose reduction without sacrificing important image information.
机译:X射线引导是介入程序不可或缺的一部分,但是暴露于电离辐射对患者和临床人员构成了不可忽略的威胁。不幸的是,X射线剂量的减少导致较低的信噪比,这可能损害X射线图像的质量。为了确保可接受的图像质量,同时保持X射线剂量尽可能低,通常的做法是使用降噪技术。但是,在非常低的剂量水平下,常规降噪技术的应用可能会导致不良的伪影或过度平滑。另一方面,在可获得相关的高剂量和低剂量X射线图像的对齐对的情况下,监督学习技术在产生合适的结果方面优于传统技术。不幸的是,在临床干预期间获取这样的图像对既不可接受也不可行。为了能够使用基于学习的方法对X射线图像进行去噪,我们提出了一种新颖的策略,其中涉及在训练阶段使用基于模型的低剂量X射线图像仿真。我们利用数据驱动的归一化步骤,该步骤提高了所提出方法的鲁棒性,以改变与不同X射线图像采集协议相关的信号相关噪声的数量。基于临床和幻像数据的定量和定性分析表明,所提出的策略优于公认的传统X射线图像去噪方法。它还表明,所提出的方法可在不牺牲重要图像信息的情况下显着降低剂量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号