首页> 外文会议>International Conference on Machine Learning, Big Data, Cloud and Parallel Computing >Big Data Quality Framework: Pre-Processing Data in Weather Monitoring Application
【24h】

Big Data Quality Framework: Pre-Processing Data in Weather Monitoring Application

机译:大数据质量框架:在天气监控应用中预处理数据

获取原文

摘要

Big Data has become an imminent part of all industries and business sectors today. All organizations in any sector like energy, banking, retail, hardware, networking, etc all generate huge quantum of heterogenous data which if mined, processed and analyzed accurately can reveal immensely useful patterns for business heads to apply to generate and grow their businesses. Big Data helps in acquiring, processing and analyzing large amounts of heterogeneous data to derive valuable results. Quality of information is affected by size, speed and format in which data is generated. Hence, Quality of Big Data is of great relevance and importance. We propose addressing various aspects of the raw data to improve its quality in the pre-processing stage, as the raw data may not usable as-is. We are exploring process like Cleansing to fix as much data as feasible, Noise filters to remove bad data, as well sub-processes for Integration and Filtering along with Data Transformation/Normalization. We evaluate and profile the Big Data during acquisition stage, which is adapted to expectations to avoid cost overheads later while also improving and leading to accurate data analysis. Hence, it is imperative to improve Data quality even it is absorbed and utilized in an industry's Big Data system. In this paper, we propose a Pre-Processing Framework to address quality of data in a weather monitoring and forecasting application that also takes into account global warming parameters and raises alertsotifications to warn users and scientists in advance.
机译:如今,大数据已成为所有行业和商业部门的迫在眉睫的部分。能源,银行,零售,硬件,网络等任何部门的所有组织都生成大量的异构数据,如果对其进行准确地挖掘,处理和分析,它们可以揭示非常有用的模式,供企业负责人用于生成和发展其业务。大数据有助于获取,处理和分析大量异构数据,以获取有价值的结果。信息质量受生成数据的大小,速度和格式的影响。因此,大数据质量具有重要的意义和重要性。我们建议解决原始数据的各个方面,以提高预处理阶段的质量,因为原始数据可能无法按原样使用。我们正在探索“清理”以修复尽可能多的数据,“噪声过滤器”以删除不良数据的过程,以及用于“集成和过滤”以及“数据转换/归一化”的子过程。我们在收购阶段对大数据进行评估和分析,以适应预期,避免以后的成本开销,同时也改善并导致准确的数据分析。因此,即使在行业的大数据系统中吸收和利用数据质量,也必须提高数据质量。在本文中,我们提出了一个预处理框架来解决天气监测和预报应用程序中的数据质量问题,该框架还考虑了全球变暖参数并发出警报/通知以提前警告用户和科学家。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号