首页> 外文会议>International Conference on Intelligent Computing and Communication for Smart World >Machine Learning Approach improves the Quality of the MRI Images in Tumor Detection and Diagnosis: A PSO based Cluster Analysis
【24h】

Machine Learning Approach improves the Quality of the MRI Images in Tumor Detection and Diagnosis: A PSO based Cluster Analysis

机译:机器学习方法可在肿瘤检测和诊断中提高MRI图像的质量:基于PSO的聚类分析

获取原文

摘要

Segmentation is the most important and basic technique of image processing which is used for the extraction of suspicious region from the given image. Brain tumor is diagnosed at advanced stages with help of the MRI images. This research aims to quantify the brain tumor loss in MRI human Head Scans by using a computational method. This method proposes Particle Swarm Optimization (PSO) for finding the centroid value to segment the brain tissue. The segmented brain MRI helps the radiologist in detecting brain abnormalities and tumor.
机译:分割是图像处理的最重要和最基本的技术,用于从给定图像中提取可疑区域。借助MRI图像可诊断出晚期的脑瘤。这项研究旨在通过使用一种计算方法来量化MRI人体头部扫描中脑肿瘤的损失。该方法提出了粒子群优化(PSO),用于寻找质心值以分割脑组织。分割后的脑部MRI可帮助放射科医生检测脑部异常和肿瘤。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号