首页> 外文会议>International conference on image processing, computer vision, pattern recognition;IPCV 2011 >Pedestrian and Vehicle Classification Surveillance System for Street-Crossing Safety
【24h】

Pedestrian and Vehicle Classification Surveillance System for Street-Crossing Safety

机译:行人及车辆分类监控系统

获取原文

摘要

This paper presents a framework for automatic pedestrian and motor vehicle classification in a street-crossing safety surveillance system. The proposed method is a coarse to fine classification approach divided into two branches. The moving objects are detected, tracked and clustered into fast moving and slow moving categories according to a motion speed estimation method. This approach is applicable to identify motor vehicles and further differentiate cars from scooters using width and shape features. The second part identifies slow moving objects. We improved the Recurrent Motion Image (RMI) algorithm to sort out the pedestrians due to their high RMI value. Haar-like features and the Adaboost algorithm are then employed to distinguish between pedestrians and scooters. Cars and scooters are identified using the object aspect ratio (AR) and area feature. The experimental results show that the recognition rate for 320 objects achieved 92.5%. The proposed system is promising for application to the traffic monitoring surveillance system.
机译:本文提出了在人行横道安全监控系统中自动对行人和机动车进行分类的框架。所提出的方法是从粗到细的分类方法,分为两个分支。根据运动速度估计方法,对运动物体进行检测,跟踪并聚类为快动和慢动类别。该方法适用于识别汽车,并使用宽度和形状特征进一步区分汽车与踏板车。第二部分标识缓慢移动的对象。由于行人的RMI值较高,我们改进了循环运动图像(RMI)算法以对行人进行分类。然后采用类似Haar的特征和Adaboost算法来区分行人和踏板车。使用对象长宽比(AR)和区域特征识别汽车和踏板车。实验结果表明,对320个目标的识别率达到了92.5%。该系统有望应用于交通监控系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号