首页> 外文会议>International conference on image processing, computer vision, pattern recognition >A TIN-based classification approach for buildings or vegetation extraction
【24h】

A TIN-based classification approach for buildings or vegetation extraction

机译:基于TIN的建筑物或植被提取方法

获取原文

摘要

In this paper, we propose a new TIN-based classification approach for feature extraction from Light Detection and Ranging (LiDAR) data point clouds. The method builds TIN first and then computes variance (standard deviation) of normal vectors at each node to classify objects from raw LiDAR data point clouds. Experimental results indicate that our method can effectively classify buildings or vegetation via choosing different threshold values of variance (or standard deviation) of normal vectors.
机译:在本文中,我们提出了一种新的基于TIN的分类方法,用于从光检测和测距(LiDAR)数据点云中提取特征。该方法首先构建TIN,然后在每个节点上计算法向矢量的方差(标准差)以对原始LiDAR数据点云中的对象进行分类。实验结果表明,通过选择不同的法向矢量方差(或标准差)阈值,我们的方法可以有效地对建筑物或植被进行分类。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号