首页> 外文会议>International conference on image processing, computer vision, pattern recognition >A Cluster Method for Labelling Large Scale Vehicle Model Dataset based on Deep Learning
【24h】

A Cluster Method for Labelling Large Scale Vehicle Model Dataset based on Deep Learning

机译:基于深度学习的大规模车辆模型数据集标注聚类方法

获取原文

摘要

Vehicle make and model recognition is an important task for vehicle analysis, which can be used for automatic toll collection and public security. Vehicle make and model recognition (MMR) is a challenging task due to the close appearance between vehicle models. In this sense, MMR is a fine-grained classification task. To train a model for this finegrained task, a large scale dataset is required. Labelling a large dataset with many classifies is difficult and tedious. In this paper, we proposed a cluster method incorporating with deep learning to assist faster labelling of a large scale vehicle make and model dataset. The proposed cluster method can automatically divide the images into groups, within each group, there is one or few classes. In addition, the cluster is performed in an incremental manner to refine the deep models. Experimental results show that our cluster method speedup the label task significantly compared with manually label of each image.
机译:车辆制造和模型识别是车辆分析的重要任务,可用于自动收费和公共安全。车辆制造商和模型识别(MMR)由于车辆模型之间的紧密外观而成为一项具有挑战性的任务。从这个意义上讲,MMR是一种细粒度的分类任务。要为该细粒度任务训练模型,需要大规模数据集。用许多分类标记大型数据集既困难又乏味。在本文中,我们提出了一种结合深度学习的聚类方法,以帮助更快地标注大型车辆制造商和模型数据集。提出的聚类方法可以自动将图像分为几组,每组内只有一个或几个类。此外,以递增方式执行聚类以完善深度模型。实验结果表明,与手动标记每个图像相比,我们的聚类方法显着加快了标记任务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号