首页> 外文会议>International conference on image processing, computer vision, pattern recognition >Fuzzy Segmentation of MR Brain Real Images Using Modalities Fusion
【24h】

Fuzzy Segmentation of MR Brain Real Images Using Modalities Fusion

机译:基于模态融合的MR脑真实图像模糊分割

获取原文

摘要

With the development of acquisition image techniques, more data coming from different sources of image become available. Multi-modality image fusion seeks to combine information from different images to obtain more inferences than can be derived from a single modality. The main aim of this work is to improve cerebral IRM real images segmentation by fusion of modalities (Tl, T2 and DP) using Fuzzy C-Means approach (FCM). The evaluation of adopted approaches was compared using four criteria which are: the standard deviation (STD), entropy of information (IE), the coefficient of correlation (CC) and the space frequency (SF). The experimental results on MR brain real images prove that the adopted scenarios of fusion approaches are more accurate and robust than the standard FCM approach.
机译:随着采集图像技术的发展,来自不同图像来源的更多数据变得可用。多模态图像融合试图结合来自不同图像的信息以获得比从单个模态中得出的更多的推论。这项工作的主要目的是通过使用模糊C均值方法(FCM)融合模式(T1,T2和DP)来改善脑IRM真实图像分割。使用四个标准对采用的方法的评估进行了比较,这四个标准是:标准差(STD),信息熵(IE),相关系数(CC)和空间频率(SF)。在MR脑真实图像上的实验结果证明,融合方法的采用场景比标准FCM方法更准确,更可靠。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号