首页> 外文会议>International Conference on Electronics, Control, Optimization and Computer Science >Performance Evaluation of Spectrum Sensing Implementation using Artificial Neural Networks and Energy Detection Method
【24h】

Performance Evaluation of Spectrum Sensing Implementation using Artificial Neural Networks and Energy Detection Method

机译:基于人工神经网络和能量检测方法的频谱感知性能评估

获取原文

摘要

A Cognitive Radio (CR) is a radio that is able to sense the spectral environment over a wide frequency band, then use it temporarily without causing any interference to the primary user (PU). The spectrum sensing operation (SS) is one of the most challenging issues in cognitive radio systems. In this paper, we are interested in the implementation of the spectrum sensing operation, using a real signal generated by Raspberry Pi 3 card and a 433 MHz Wireless transmitter (ASK (Amplitude-Shift Keying) and FSK (Frequency-Shift Keying) modulation type), and captured under MATLAB-Simulink software by an RTL-SDR hardware using two detection method: the energy detection technique and the Artificial neural network (ANN). In ANN, we have tested different training algorithms that can be applied on the set of input data patterns to find out the best ANN architecture for signal detection. The performance evaluation of the used approaches is evaluated in terms of its ability to detect the transmitted signal by two parameters: probability of detection and false alarm probability.
机译:认知无线电(CR)是一种无线电,它能够感知宽频带上的频谱环境,然后暂时使用它,而不会对主要用户(PU)造成任何干扰。频谱感测操作(SS)是认知无线电系统中最具挑战性的问题之一。在本文中,我们对使用Raspberry Pi 3卡生成的真实信号以及433 MHz无线发射机(ASK(幅移键控)和FSK(频移键控)调制类型)产生的频谱感测操作感兴趣。 ),并通过RTL-SDR硬件在MATLAB-Simulink软件下使用两种检测方法进行捕获:能量检测技术和人工神经网络(ANN)。在ANN中,我们测试了可应用于一组输入数据模式的不同训练算法,以找出用于信号检测的最佳ANN体系结构。所用方法的性能评估是根据其通过两个参数检测传输信号的能力来评估的:检测概率和虚警概率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号