首页> 外文会议>International Conference on Electrical Engineering and Information Communication Technology >Breast Cancer Prediction Applying Different Classification Algorithm with Comparative Analysis using WEKA
【24h】

Breast Cancer Prediction Applying Different Classification Algorithm with Comparative Analysis using WEKA

机译:应用WEKA的差异分析和比较分析的乳腺癌预测

获取原文

摘要

At present world, Breast cancer is a second main cause of cancer death in women after lung cancer. Breast cancer occurs when some breast cells begin to raise abnormally. It can arise in any portion of the Breast and it can be prevented if the treatment is started at the early stage of the Breast cancer. Breast cancer is a malignant tumour i.e. a collection of cancer cells arising from the cells of the breast Treatment of breast cancer relies on the cancer type and its stage (zero to fourth) and may include surgery, radiation, or chemotherapy. Mainly this paper focused on diagnosing the Breast cancer disease using various classification algorithm with the help of data mining tools. Data mining of the intelligent accumulated from previously disease detected patients opened up a new aspect of medical progression. In this paper, the capability of the classification of Naïve Bayes, Random Forest, Logistic Regression, Multilayer Perceptron, K-nearest neighbors in evaluating the Breast Cancer Disease dataset culled from UCI machine learning repository, was observed to predict the existence of Breast cancer. Data set has been explored in terms of Kappa Statistics, TP rate, FP Rate and precision.
机译:在当今世界,乳腺癌是仅次于肺癌的女性癌症死亡的第二大主要原因。当一些乳房细胞开始异常生长时,就会发生乳腺癌。它可以出现在乳腺癌的任何部位,如果在乳腺癌的早期阶段开始治疗,就可以预防。乳腺癌是一种恶性肿瘤,即从乳腺癌细胞中产生的一系列癌细胞。乳腺癌的治疗取决于癌症的类型及其阶段(零至四分之一),可能包括手术,放疗或化学疗法。本文主要致力于借助数据挖掘工具使用各种分类算法诊断乳腺癌。从先前发现疾病的患者身上积累的智能数据的挖掘开辟了医学进步的新方面。在本文中,观察到朴素贝叶斯,随机森林,逻辑回归,多层感知器,K近邻的分类能力评估了从UCI机器学习存储库中剔除的乳腺癌疾病数据集,从而预测了乳腺癌的存在。数据集已根据Kappa统计信息,TP率,FP率和精度进行了研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号