首页> 外文会议>International Conference on Electrical Engineering and Information Communication Technology >Study and Observation of the Variations of Accuracies for Handwritten Digits Recognition with Various Hidden Layers and Epochs using Neural Network Algorithm
【24h】

Study and Observation of the Variations of Accuracies for Handwritten Digits Recognition with Various Hidden Layers and Epochs using Neural Network Algorithm

机译:基于神经网络算法的各种隐层和历元手写数字识别精度变化的研究与观察

获取原文

摘要

In recent days, Artificial Neural Network (ANN) can be applied to a vast majority of fields including business, medicine, engineering, etc. The most popular areas where ANN is employed nowadays are pattern and sequence recognition, novelty detection, character recognition, regression analysis, speech recognition, image compression, stock market prediction, Electronic nose, security, loan applications, data processing, robotics, and control. The benefits associated with its broad applications leads to increasing popularity of ANN in the era of 21st Century. ANN confers many benefits such as organic learning, nonlinear data processing, fault tolerance, and self-repairing compared to other conventional approaches. The primary objective of this paper is to analyze the influence of the hidden layers of a neural network over the overall performance of the network. To demonstrate this influence, we applied neural network with different layers on the MNIST dataset. Also, another goal is to observe the variations of accuracies of ANN for different numbers of hidden layers and epochs and to compare and contrast among them.
机译:近年来,人工神经网络(ANN)可以应用于绝大部分领域,包括商业,医学,工程等。当今使用ANN的最流行领域是模式和序列识别,新颖性检测,字符识别,回归分析,语音识别,图像压缩,股市预测,电子鼻,安全性,贷款申请,数据处理,机器人和控制。其广泛应用带来的好处导致了21世纪ANN的日益普及。与其他传统方法相比,人工神经网络具有许多优势,例如有机学习,非线性数据处理,容错和自我修复。本文的主要目的是分析神经网络的隐藏层对网络整体性能的影响。为了证明这种影响,我们在MNIST数据集上应用了具有不同层次的神经网络。另外,另一个目标是观察不同数量的隐藏层和历元的人工神经网络精度的变化,并在它们之间进行比较和对比。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号