首页> 外文会议>International Conference on Computing for Sustainable Global Development >An improved online plagiarism detection approach for semantic analysis using custom search engine
【24h】

An improved online plagiarism detection approach for semantic analysis using custom search engine

机译:使用自定义搜索引擎进行语义分析的改进的在线窃检测方法

获取原文

摘要

Plagiarism is increasing in every field day by day such as plagiarism in music, paintings, maps, technical articles and drawings, academics etc. Due to use of smart phones and advancement of information in world increased availability of information openly, leads to plagiarism of data. Plagiarism refers to stealing and passing off another words or ideas as one's own. Plagiarism can be of different types. Plagiarism Detection is performed by matching string of one document with another document. Matching can be performed in two ways intra (to detect plagiarism within small organization like college) and extra-corpal (to detect plagiarism globally through web). This paper discuss extra-corpal semantic matching using custom search engine following crawlingprocess. By using custom search engine, we have accessed data globally. Custom search engine gives various links related to words i.e. Source of that word and then proposed method perform semantic analysis. For detecting plagiarism, existing system focus on keywords but fail to detect plagiarism using semantic web. We have proposed new system for detecting the plagiarism globally by custom search engine using semantic technology. After the implementation of this algorithm, fast and accurate system for plagiarism detection has been developed.
机译:music窃在每个领域都在日益增加,例如音乐,绘画,地图,技术文章和绘画,学者等中的窃。由于智能手机的使用和世界信息的进步,公开的信息可用性增加,导致数据的窃。窃是指以自己的名义窃取和传播其他字词或思想。窃可以有不同的类型。通过将一个文档的字符串与另一个文档的字符串进行匹配来执行matching窃检测。可以通过两种方式进行匹配:内部(以检测像大学这样的小型组织内的窃)和体外(以通过Web全局检测窃)。本文讨论了在爬网过程中使用自定义搜索引擎进行的体外语义匹配。通过使用自定义搜索引擎,我们已全局访问了数据。自定义搜索引擎会提供与单词相关的各种链接,即该单词的来源,然后提出的方法会执行语义分析。为了检测窃,现有系统集中于关键字,但是不能使用语义网来检测窃。我们提出了一种新的系统,该系统可通过使用语义技术的自定义搜索引擎在全球范围内检测pla窃行为。实施该算法后,开发了快速准确的窃检测系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号