首页> 外文会议>International Conference on Computer Vision >Make a Face: Towards Arbitrary High Fidelity Face Manipulation
【24h】

Make a Face: Towards Arbitrary High Fidelity Face Manipulation

机译:做个脸:走向任意高保真脸部操纵

获取原文

摘要

Recent studies have shown remarkable success in face manipulation task with the advance of GANs and VAEs paradigms, but the outputs are sometimes limited to low-resolution and lack of diversity. In this work, we propose Additive Focal Variational Auto-encoder (AF-VAE), a novel approach that can arbitrarily manipulate high-resolution face images using a simple yet effective model and only weak supervision of reconstruction and KL divergence losses. First, a novel additive Gaussian Mixture assumption is introduced with an unsupervised clustering mechanism in the structural latent space, which endows better disentanglement and boosts multi-modal representation with external memory. Second, to improve the perceptual quality of synthesized results, two simple strategies in architecture design are further tailored and discussed on the behavior of Human Visual System (HVS) for the first time, allowing for fine control over the model complexity and sample quality. Human opinion studies and new state-of-the-art Inception Score (IS) / Frechet Inception Distance (FID) demonstrate the superiority of our approach over existing algorithms, advancing both the fidelity and extremity of face manipulation task.
机译:最近的研究表明,随着GAN和VAE范例的发展,面部操作任务取得了显著成功,但有时输出结果仅限于低分辨率和缺乏多样性。在这项工作中,我们提出了加法焦点变化自动编码器(AF-VAE),这是一种新颖的方法,可以使用简单而有效的模型任意操纵高分辨率的面部图像,并且仅对重建和KL散度损失进行弱监督。首先,引入了一种新的加性高斯混合假设,该假设在结构潜在空间中具有无监督的聚类机制,这赋予了更好的解纠缠度并增强了具有外部记忆的多峰表示。其次,为了提高综合结果的感知质量,首次对人类视觉系统(HVS)的行为进一步定制和讨论了两种简单的体系结构设计策略,以实现对模型复杂性和样本质量的精细控制。人类意见研究和新的最先进的初始得分(IS)/弗雷歇特初始距离(FID)证明了我们的方法优于现有算法的优势,同时提高了面部操作任务的保真度和极端性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号