首页> 外文会议>International Conference on Computer Vision >LADN: Local Adversarial Disentangling Network for Facial Makeup and De-Makeup
【24h】

LADN: Local Adversarial Disentangling Network for Facial Makeup and De-Makeup

机译:LADN:用于脸部化妆和去妆的本地对抗网络

获取原文

摘要

We propose a local adversarial disentangling network (LADN) for facial makeup and de-makeup. Central to our method are multiple and overlapping local adversarial discriminators in a content-style disentangling network for achieving local detail transfer between facial images, with the use of asymmetric loss functions for dramatic makeup styles with high-frequency details. Existing techniques do not demonstrate or fail to transfer high-frequency details in a global adversarial setting, or train a single local discriminator only to ensure image structure consistency and thus work only for relatively simple styles. Unlike others, our proposed local adversarial discriminators can distinguish whether the generated local image details are consistent with the corresponding regions in the given reference image in cross-image style transfer in an unsupervised setting. Incorporating these technical contributions, we achieve not only state-of-the-art results on conventional styles but also novel results involving complex and dramatic styles with high-frequency details covering large areas across multiple facial features. A carefully designed dataset of unpaired before and after makeup images is released at https://georgegu1997.github.io/LADN-project-page.
机译:我们建议使用本地对抗式解缠网络(LADN)进行面部化妆和卸妆。我们的方法的核心是内容样式解缠网络中的多个重叠的局部对抗标识符,用于实现面部图像之间的局部细节传递,并使用非对称丢失功能来处理具有高频细节的戏剧性化妆风格。现有技术不会在全局对抗环境中演示或无法传递高频细节,或者仅训练单个局部判别器以确保图像结构的一致性,因此仅适用于相对简单的样式。与其他算法不同,我们提出的局部对抗标识符可以在无人监督的情况下,以跨图像样式转移来区分生成的局部图像细节是否与给定参考图像中的相应区域一致。结合这些技术贡献,我们不仅获得了传统风格的最新成果,而且还获得了涉及复杂而引人注目的样式的新颖成果,其中高频细节覆盖了多个面部特征的大面积区域。在https://georgegu1997.github.io/LADN-project-page上发布了经过精心设计的化妆前和化妆后未配对的数据集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号