首页> 外文会议>International Conference on Computer Vision >Leveraging Long-Range Temporal Relationships Between Proposals for Video Object Detection
【24h】

Leveraging Long-Range Temporal Relationships Between Proposals for Video Object Detection

机译:利用视频对象检测提案之间的长期时间关系

获取原文

摘要

Single-frame object detectors perform well on videos sometimes, even without temporal context. However, challenges such as occlusion, motion blur, and rare poses of objects are hard to resolve without temporal awareness. Thus, there is a strong need to improve video object detection by considering long-range temporal dependencies. In this paper, we present a light-weight modification to a single-frame detector that accounts for arbitrary long dependencies in a video. It improves the accuracy of a single-frame detector significantly with negligible compute overhead. The key component of our approach is a novel temporal relation module, operating on object proposals, that learns the similarities between proposals from different frames and selects proposals from past and/or future to support current proposals. Our final “causal' model, without any offline post-processing steps, runs at a similar speed as a single-frame detector and achieves state-of-the-art video object detection on ImageNet VID dataset.
机译:即使没有时间上下文,单帧对象检测器有时也会在视频上表现良好。但是,如果没有时间意识,很难解决诸如遮挡,运动模糊和物体稀有姿势等难题。因此,强烈需要通过考虑远程时间依赖性来改善视频对象检测。在本文中,我们提出了对单帧检测器的轻量级修改,它考虑了视频中任意长的依赖性。它以可忽略的计算开销大大提高了单帧检测器的精度。我们方法的关键部分是一个新颖的时间关系模块,该模块对对象建议书进行操作,可从不同框架中了解建议书之间的相似性,并从过去和/或将来选择建议书以支持当前建议书。我们最终的“因果”模型无需任何离线后处理步骤,其运行速度与单帧检测器相似,并且可以在ImageNet VID数据集上实现最新的视频对象检测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号