首页> 外文会议>International Conference on Computer Vision >GarNet: A Two-Stream Network for Fast and Accurate 3D Cloth Draping
【24h】

GarNet: A Two-Stream Network for Fast and Accurate 3D Cloth Draping

机译:GarNet:两流网络,用于快速,准确的3D布铺贴

获取原文

摘要

While Physics-Based Simulation (PBS) can accurately drape a 3D garment on a 3D body, it remains too costly for real-time applications, such as virtual try-on. By contrast, inference in a deep network, requiring a single forward pass, is much faster. Taking advantage of this, we propose a novel architecture to fit a 3D garment template to a 3D body. Specifically, we build upon the recent progress in 3D point cloud processing with deep networks to extract garment features at varying levels of detail, including point-wise, patch-wise and global features. We fuse these features with those extracted in parallel from the 3D body, so as to model the cloth-body interactions. The resulting two-stream architecture, which we call as GarNet, is trained using a loss function inspired by physics-based modeling, and delivers visually plausible garment shapes whose 3D points are, on average, less than 1 cm away from those of a PBS method, while running 100 times faster. Moreover, the proposed method can model various garment types with different cutting patterns when parameters of those patterns are given as input to the network.
机译:尽管基于物理的仿真(PBS)可以将3D服装准确地悬垂在3D人体上,但是对于诸如虚拟试穿之类的实时应用而言,它仍然过于昂贵。相比之下,在深度网络中进行推理(需要单次前向通过)的速度要快得多。利用此优势,我们提出了一种新颖的体系结构,可将3D服装模板适配到3D身体。具体来说,我们利用3D点云处理的最新进展以及深层网络来提取不同细节级别的服装特征,包括逐点,逐块和全局特征。我们将这些特征与从3D身体中并行提取的那些特征融合在一起,以便对衣服与身体之间的相互作用进行建模。最终的两流体系结构,我们称为GarNet,使用基于物理建模的损失函数进行训练,并提供看起来合理的服装形状,其3D点平均距离PBS不到1 cm方法,同时运行速度提高了100倍。而且,当给定这些图案的参数作为网络输入时,所提出的方法可以对具有不同切割图案的各种服装类型进行建模。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号