首页> 外文会议>International Conference on Computer Vision >CenterNet: Keypoint Triplets for Object Detection
【24h】

CenterNet: Keypoint Triplets for Object Detection

机译:CenterNet:用于对象检测的关键三元组

获取原文

摘要

In object detection, keypoint-based approaches often experience the drawback of a large number of incorrect object bounding boxes, arguably due to the lack of an additional assessment inside cropped regions. This paper presents an efficient solution that explores the visual patterns within individual cropped regions with minimal costs. We build our framework upon a representative one-stage keypoint-based detector named CornerNet. Our approach, named CenterNet, detects each object as a triplet, rather than a pair, of keypoints, which improves both precision and recall. Accordingly, we design two customized modules, cascade corner pooling, and center pooling, that enrich information collected by both the top-left and bottom-right corners and provide more recognizable information from the central regions. On the MS-COCO dataset, CenterNet achieves an AP of 47.0 %, outperforming all existing one-stage detectors by at least 4.9%. Furthermore, with a faster inference speed than the top-ranked two-stage detectors, CenterNet demonstrates a comparable performance to these detectors. Code is available at https://github.com/Duankaiwen/CenterNet.
机译:在对象检测中,基于关键点的方法通常会遇到大量错误的对象边界框的缺点,这可能是由于缺少裁剪区域内的附加评估所致。本文提出了一种有效的解决方案,以最小的成本探索单个裁剪区域内的视觉模式。我们基于具有代表性的基于关键点的单阶段检测器CornerNet构建我们的框架。我们的名为CenterNet的方法将每个对象检测为三个关键点,而不是一对关键点,从而提高了准确性和查全率。因此,我们设计了两个自定义的模块,即级联角池和中心池,它们丰富了左上角和右下角所收集的信息,并提供了来自中心区域的更多可识别信息。在MS-COCO数据集上,CenterNet的AP达到47.0%,比所有现有的一级探测器高出至少4.9%。此外,CenterNet的推理速度比排名靠前的两级检测器要快,因此其性能可与这些检测器媲美。可从https://github.com/Duankaiwen/CenterNet获得代码。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号