首页> 外文会议>International Conference on Computer Vision >Constructing Self-Motivated Pyramid Curriculums for Cross-Domain Semantic Segmentation: A Non-Adversarial Approach
【24h】

Constructing Self-Motivated Pyramid Curriculums for Cross-Domain Semantic Segmentation: A Non-Adversarial Approach

机译:构建跨域语义分割的自律式金字塔课程:一种非专业方法

获取原文

摘要

We propose a new approach, called self-motivated pyramid curriculum domain adaptation (PyCDA), to facilitate the adaptation of semantic segmentation neural networks from synthetic source domains to real target domains. Our approach draws on an insight connecting two existing works: curriculum domain adaptation and self-training. Inspired by the former, PyCDA constructs a pyramid curriculum which contains various properties about the target domain. Those properties are mainly about the desired label distributions over the target domain images, image regions, and pixels. By enforcing the segmentation neural network to observe those properties, we can improve the network's generalization capability to the target domain. Motivated by the self-training, we infer this pyramid of properties by resorting to the semantic segmentation network itself. Unlike prior work, we do not need to maintain any additional models (e.g., logistic regression or discriminator networks) or to solve minmax problems which are often difficult to optimize. We report state-of-the-art results for the adaptation from both GTAV and SYNTHIA to Cityscapes, two popular settings in unsupervised domain adaptation for semantic segmentation.
机译:我们提出了一种称为自发性金字塔课程域自适应(PyCDA)的新方法,以促进语义分割神经网络从合成源域到实际目标域的适应。我们的方法基于将两个现有作品联系在一起的见解:课程领域适应和自我训练。受前者的启发,PyCDA构建了一个金字塔课程,其中包含有关目标域的各种属性。这些属性主要是关于目标域图像,图像区域和像素上的所需标签分布。通过强制分段神经网络观察这些属性,可以提高网络对目标域的泛化能力。在自我训练的激励下,我们借助语义分割网络本身来推断属性金字塔。与先前的工作不同,我们不需要维护任何其他模型(例如,逻辑回归或判别网络)或解决通常难以优化的最小最大问题。我们报告了从GTAV和SYNTHIA到Cityscapes的适应的最新结果,Cityscapes是在无监督域适应中进行语义分割的两个流行设置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号