首页> 外文会议>International Conference on Computer Vision >C3DPO: Canonical 3D Pose Networks for Non-Rigid Structure From Motion
【24h】

C3DPO: Canonical 3D Pose Networks for Non-Rigid Structure From Motion

机译:C3DPO:用于运动的非刚性结构的规范3D姿势网络

获取原文

摘要

We propose C3DPO, a method for extracting 3D models of deformable objects from 2D keypoint annotations in unconstrained images. We do so by learning a deep network that reconstructs a 3D object from a single view at a time, accounting for partial occlusions, and explicitly factoring the effects of viewpoint changes and object deformations. In order to achieve this factorization, we introduce a novel regularization technique. We first show that the factorization is successful if, and only if, there exists a certain canonicalization function of the reconstructed shapes. Then, we learn the canonicalization function together with the reconstruction one, which constrains the result to be consistent. We demonstrate state-of-the-art reconstruction results for methods that do not use ground-truth 3D supervision for a number of benchmarks, including Up3D and PASCAL3D+.
机译:我们提出了C3DPO,一种从不受约束的图像中的2D关键点注释中提取可变形对象的3D模型的方法。我们通过学习深度网络来做到这一点,该网络一次可从单个视图重建3D对象,并考虑了部分遮挡,并明确考虑了视点变化和对象变形的影响。为了实现这种分解,我们引入了一种新颖的正则化技术。我们首先表明,当且仅当存在重构形状的某些规范化函数时,分解成功。然后,我们将标准化函数与重构函数一起学习,这将约束结果保持一致。我们展示了针对未在许多基准(包括Up3D和PASCAL3D +)中使用真实3D监督的方法的最新重建结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号