首页> 外文会议>International Conference on Computer Vision >Restoration of Non-Rigidly Distorted Underwater Images Using a Combination of Compressive Sensing and Local Polynomial Image Representations
【24h】

Restoration of Non-Rigidly Distorted Underwater Images Using a Combination of Compressive Sensing and Local Polynomial Image Representations

机译:使用压缩感测和局部多项式图像表示的组合恢复非刚性失真的水下图像

获取原文

摘要

Images of static scenes submerged beneath a wavy water surface exhibit severe non-rigid distortions. The physics of water flow suggests that water surfaces possess spatio-temporal smoothness and temporal periodicity. Hence they possess a sparse representation in the 3D discrete Fourier (DFT) basis. Motivated by this, we pose the task of restoration of such video sequences as a compressed sensing (CS) problem. We begin by tracking a few salient feature points across the frames of a video sequence of the submerged scene. Using these point trajectories, we show that the motion fields at all other (non-tracked) points can be effectively estimated using a typical CS solver. This by itself is a novel contribution in the field of non-rigid motion estimation. We show that this method outperforms state of the art algorithms for underwater image restoration. We further consider a simple optical flow algorithm based on local polynomial expansion of the image frames (PEOF). Surprisingly, we demonstrate that PEOF is more efficient and often outperforms all the state of the art methods in terms of numerical measures. Finally, we demonstrate that a two-stage approach consisting of the CS step followed by PEOF much more accurately preserves the image structure and improves the (visual as well as numerical) video quality as compared to just the PEOF stage. The source code, datasets and supplemental material can be accessed at cite{GitRepo}, cite{ProjectPage}.
机译:淹没在波浪状水面下的静态场景的图像显示出严重的非刚性扭曲。水流物理学表明水表面具有时空平滑度和时间周期性。因此,它们在3D离散傅里叶(DFT)的基础上具有稀疏表示。因此,我们提出了将视频序列还原为压缩感知(CS)问题的任务。我们首先在淹没场景的视频序列的帧中跟踪几个显着特征点。使用这些点轨迹,我们表明,使用典型的CS求解器可以有效地估计所有其他(非跟踪)点的运动场。这本身是非刚性运动估计领域的一种新颖的贡献。我们证明了该方法优于水下图像复原的最新算法。我们进一步考虑基于图像帧局部多项式展开(PEOF)的简单光流算法。出乎意料的是,我们证明了PEOF效率更高,并且在数值测量方面常常胜过所有现有技术。最后,我们证明了一个由CS步和PEOF组成的两阶段方法,与仅PEOF阶段相比,可以更准确地保留图像结构并改善(视觉和数字)视频质量。可以在cite {GitRepo},cite {ProjectPage}上访问源代码,数据集和补充材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号