首页> 外文会议>International Conference on Computer Vision >PU-GAN: A Point Cloud Upsampling Adversarial Network
【24h】

PU-GAN: A Point Cloud Upsampling Adversarial Network

机译:PU-GAN:点云上采样对抗网络

获取原文

摘要

Point clouds acquired from range scans are often sparse, noisy, and non-uniform. This paper presents a new point cloud upsampling network called PU-GAN, which is formulated based on a generative adversarial network (GAN), to learn a rich variety of point distributions from the latent space and upsample points over patches on object surfaces. To realize a working GAN network, we construct an up-down-up expansion unit in the generator for upsampling point features with error feedback and self-correction, and formulate a self-attention unit to enhance the feature integration. Further, we design a compound loss with adversarial, uniform and reconstruction terms, to encourage the discriminator to learn more latent patterns and enhance the output point distribution uniformity. Qualitative and quantitative evaluations demonstrate the quality of our results over the state-of-the-arts in terms of distribution uniformity, proximity-to-surface, and 3D reconstruction quality.
机译:从范围扫描获取的点云通常稀疏,嘈杂且不均匀。本文提出了一种称为PU-GAN的新点云上采样网络,该网络是基于生成对抗网络(GAN)制定的,旨在从潜在空间中学习各种各样的点分布,并在对象表面的斑块上进行上采样点的上采样。为了实现可运行的GAN网络,我们在生成器中构造了一个自上而下的扩展单元,以对带有误差反馈和自校正的点特征进行上采样,并制定了一个自注意力单元来增强特征集成。此外,我们设计了具有对抗性,统一性和重构性的复合损失,以鼓励鉴别者学习更多的潜在模式并增强输出点分布的均匀性。定性和定量评估从分布均匀性,表面接近度和3D重建质量方面证明了我们的结果优于最新技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号