首页> 外文会议>International Conference on Computer Vision >Expert Sample Consensus Applied to Camera Re-Localization
【24h】

Expert Sample Consensus Applied to Camera Re-Localization

机译:专家样本共识应用于相机重新定位

获取原文

摘要

Fitting model parameters to a set of noisy data points is a common problem in computer vision. In this work, we fit the 6D camera pose to a set of noisy correspondences between the 2D input image and a known 3D environment. We estimate these correspondences from the image using a neural network. Since the correspondences often contain outliers, we utilize a robust estimator such as Random Sample Consensus (RANSAC) or Differentiable RANSAC (DSAC) to fit the pose parameters. When the problem domain, e.g. the space of all 2D-3D correspondences, is large or ambiguous, a single network does not cover the domain well. Mixture of Experts (MoE) is a popular strategy to divide a problem domain among an ensemble of specialized networks, so called experts, where a gating network decides which expert is responsible for a given input. In this work, we introduce Expert Sample Consensus (ESAC), which integrates DSAC in a MoE. Our main technical contribution is an efficient method to train ESAC jointly and end-to-end. We demonstrate experimentally that ESAC handles two real-world problems better than competing methods, i.e. scalability and ambiguity. We apply ESAC to fitting simple geometric models to synthetic images, and to camera re-localization for difficult, real datasets.
机译:将模型参数拟合到一组嘈杂的数据点是计算机视觉中的常见问题。在这项工作中,我们将6D相机的姿势调整为2D输入图像和已知3D环境之间的一组嘈杂的对应关系。我们使用神经网络从图像中估计这些对应关系。由于对应关系通常包含离群值,因此我们使用鲁棒的估计器(例如随机样本共识(RANSAC)或微分RANSAC(DSAC))来拟合姿势参数。当问题域时,例如所有2D-3D对应关系的空间很大或不明确,单个网络不能很好地覆盖该域。专家混合(MoE)是一种流行的策略,用于将问题域划分为一组专用网络,即所谓的专家,其中选通网络决定由哪个专家负责给定输入。在这项工作中,我们介绍了专家样本共识(ESAC),它将DSAC集成到MoE中。我们的主要技术贡献是一种有效的方法来联合和端到端地培训ESAC。我们通过实验证明,ESAC比可竞争的方法更好地处理了两个现实问题,即可伸缩性和歧义性。我们将ESAC应用于将简单的几何模型拟合到合成图像,并对困难的真实数据集进行摄像机重新定位。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号