首页> 外文会议>International Conference on Computer Vision >SVD: A Large-Scale Short Video Dataset for Near-Duplicate Video Retrieval
【24h】

SVD: A Large-Scale Short Video Dataset for Near-Duplicate Video Retrieval

机译:SVD:用于近乎重复的视频检索的大规模短视频数据集

获取原文

摘要

With the explosive growth of video data in real applications, near-duplicate video retrieval (NDVR) has become indispensable and challenging, especially for short videos. However, all existing NDVR datasets are introduced for long videos. Furthermore, most of them are small-scale and lack of diversity due to the high cost of collecting and labeling near-duplicate videos. In this paper, we introduce a large-scale short video dataset, called SVD, for the NDVR task. SVD contains over 500,000 short videos and over 30,000 labeled videos of near-duplicates. We use multiple video mining techniques to construct positiveegative pairs. Furthermore, we design temporal and spatial transformations to mimic user-attack behavior in real applications for constructing more difficult variants of SVD. Experiments show that existing state-of-the-art NDVR methods, including real-value based and hashing based methods, fail to achieve satisfactory performance on this challenging dataset. The release of SVD dataset will foster research and system engineering in the NDVR area. The SVD dataset is available at https://svdbase.github.io.
机译:随着实际应用中视频数据的爆炸性增长,近乎重复的视频检索(NDVR)已变得必不可少且具有挑战性,尤其是对于短视频而言。但是,所有现有的NDVR数据集都针对长视频引入。此外,由于收集和标记几乎重复的视频的高昂成本,它们大多数都是小型的且缺乏多样性。在本文中,我们为NDVR任务介绍了一个称为SVD的大规模短视频数据集。 SVD包含500,000多个短视频和30,000多个近重复的带标签视频。我们使用多种视频挖掘技术来构造正/负对。此外,我们设计了时间和空间变换来模拟实际应用中的用户攻击行为,以构造更困难的SVD变体。实验表明,现有的最新NDVR方法(包括基于实值的方法和基于哈希的方法)无法在这个具有挑战性的数据集上获得令人满意的性能。 SVD数据集的发布将促进NDVR领域的研究和系统工程。 SVD数据集可在https://svdbase.github.io获得。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号