首页> 外文会议>International Conference on Computer Vision >Embedded Block Residual Network: A Recursive Restoration Model for Single-Image Super-Resolution
【24h】

Embedded Block Residual Network: A Recursive Restoration Model for Single-Image Super-Resolution

机译:嵌入式块残差网络:单图像超分辨率的递归恢复模型

获取原文

摘要

Single-image super-resolution restores the lost structures and textures from low-resolved images, which has achieved extensive attention from the research community. The top performers in this field include deep or wide convolutional neural networks, or recurrent neural networks. However, the methods enforce a single model to process all kinds of textures and structures. A typical operation is that a certain layer restores the textures based on the ones recovered by the preceding layers, ignoring the characteristics of image textures. In this paper, we believe that the lower-frequency and higher-frequency information in images have different levels of complexity and should be restored by models of different representational capacity. Inspired by this, we propose a novel embedded block residual network (EBRN) which is an incremental recovering progress for texture super-resolution. Specifically, different modules in the model restores information of different frequencies. For lower-frequency information, we use shallower modules of the network to recover; for higher-frequency information, we use deeper modules to restore. Extensive experiments indicate that the proposed EBRN model achieves superior performance and visual improvements against the state-of-the-arts.
机译:单图像超分辨率可从低分辨率的图像中恢复丢失的结构和纹理,这已引起研究界的广泛关注。在该领域中表现最好的是深或宽卷积神经网络或递归神经网络。但是,这些方法强制使用单个模型来处理各种纹理和结构。一个典型的操作是,某个层基于先前层恢复的纹理来恢复纹理,而忽略图像纹理的特征。在本文中,我们认为图像中的低频信息和高频信息具有不同的复杂度,应通过具有不同表示能力的模型来进行恢复。受此启发,我们提出了一种新颖的嵌入式块残差网络(EBRN),它是用于纹理超分辨率的增量恢复技术。具体地,模型中的不同模块恢复不同频率的信息。对于低频信息,我们使用网络的较浅模块进行恢复;对于更高频率的信息,我们使用更深的模块进行还原。大量的实验表明,所提出的EBRN模型相对于最新技术具有出色的性能和视觉效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号