首页> 外文会议>International Conference on Computer Vision >SplitNet: Sim2Sim and Task2Task Transfer for Embodied Visual Navigation
【24h】

SplitNet: Sim2Sim and Task2Task Transfer for Embodied Visual Navigation

机译:SplitNet:Sim2Sim和Task2Task传输,用于实现可视化导航

获取原文

摘要

We propose SplitNet, a method for decoupling visual perception and policy learning. By incorporating auxiliary tasks and selective learning of portions of the model, we explicitly decompose the learning objectives for visual navigation into perceiving the world and acting on that perception. We show improvements over baseline models on transferring between simulators, an encouraging step towards Sim2Real. Additionally, SplitNet generalizes better to unseen environments from the same simulator and transfers faster and more effectively to novel embodied navigation tasks. Further, given only a small sample from a target domain, SplitNet can match the performance of traditional end-to-end pipelines which receive the entire dataset
机译:我们提出了SplitNet,这是一种将视觉感知与政策学习脱钩的方法。通过合并辅助任务和模型部分的选择性学习,我们明确地将视觉导航的学习目标分解为感知世界并根据该感知进行操作。我们展示了在模拟器之间进行转换时对基线模型的改进,这是向Sim2Real迈出的令人鼓舞的一步。此外,SplitNet可以从同一模拟器更好地推广到看不见的环境,并更快,更有效地转移到新颖的嵌入式导航任务。此外,仅从目标域中获取少量样本,SplitNet就可以匹配接收整个数据集的传统端到端管道的性能

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号