首页> 外文会议>International Conference on Computer Vision >ACNet: Strengthening the Kernel Skeletons for Powerful CNN via Asymmetric Convolution Blocks
【24h】

ACNet: Strengthening the Kernel Skeletons for Powerful CNN via Asymmetric Convolution Blocks

机译:ACNet:通过非对称卷积块增强强大的CNN的内核骨架

获取原文

摘要

As designing appropriate Convolutional Neural Network (CNN) architecture in the context of a given application usually involves heavy human works or numerous GPU hours, the research community is soliciting the architecture-neutral CNN structures, which can be easily plugged into multiple mature architectures to improve the performance on our real-world applications. We propose Asymmetric Convolution Block (ACB), an architecture-neutral structure as a CNN building block, which uses 1D asymmetric convolutions to strengthen the square convolution kernels. For an off-the-shelf architecture, we replace the standard square-kernel convolutional layers with ACBs to construct an Asymmetric Convolutional Network (ACNet), which can be trained to reach a higher level of accuracy. After training, we equivalently convert the ACNet into the same original architecture, thus requiring no extra computations anymore. We have observed that ACNet can improve the performance of various models on CIFAR and ImageNet by a clear margin. Through further experiments, we attribute the effectiveness of ACB to its capability of enhancing the model's robustness to rotational distortions and strengthening the central skeleton parts of square convolution kernels.
机译:由于在给定应用程序的上下文中设计适当的卷积神经网络(CNN)架构通常会涉及大量的人工工作或大量的GPU时间,因此研究团体正在寻求与架构无关的CNN结构,可以轻松地将其插入多个成熟的架构中以进行改进实际应用程序中的性能。我们提出非对称卷积块(ACB),这是一种与结构无关的结构,作为CNN构造块,它使用一维非对称卷积来增强平方卷积核。对于现成的体系结构,我们用ACB取代标准的方形内核卷积层,以构建非对称卷积网络(ACNet),可以对其进行训练以达到更高的准确性。经过培训后,我们等效地将ACNet转换为相同的原始体系结构,因此不再需要额外的计算。我们已经观察到ACNet可以明显改善CIFAR和ImageNet上各种模型的性能。通过进一步的实验,我们将ACB的有效性归因于其增强模型对旋转失真的鲁棒性以及增强方形卷积核的中心骨架部分的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号