首页> 外文会议>International Conference on Computer Vision >Pose-Guided Feature Alignment for Occluded Person Re-Identification
【24h】

Pose-Guided Feature Alignment for Occluded Person Re-Identification

机译:姿势指导的特征对齐用于被遮挡人员的重新识别

获取原文

摘要

Persons are often occluded by various obstacles in person retrieval scenarios. Previous person re-identification (re-id) methods, either overlook this issue or resolve it based on an extreme assumption. To alleviate the occlusion problem, we propose to detect the occluded regions, and explicitly exclude those regions during feature generation and matching. In this paper, we introduce a novel method named Pose-Guided Feature Alignment (PGFA), exploiting pose landmarks to disentangle the useful information from the occlusion noise. During the feature constructing stage, our method utilizes human landmarks to generate attention maps. The generated attention maps indicate if a specific body part is occluded and guide our model to attend to the non-occluded regions. During matching, we explicitly partition the global feature into parts and use the pose landmarks to indicate which partial features belonging to the target person. Only the visible regions are utilized for the retrieval. Besides, we construct a large-scale dataset for the Occluded Person Re-ID problem, namely Occluded-DukeMTMC, which is by far the largest dataset for the Occlusion Person Re-ID. Extensive experiments are conducted on our constructed occluded re-id dataset, two partial re-id datasets, and two commonly used holistic re-id datasets. Our method largely outperforms existing person re-id methods on three occlusion datasets, while remains top performance on two holistic datasets.
机译:在人员检索场景中,人员经常被各种障碍所阻塞。先前的人员重新识别(re-id)方法要么忽略了此问题,要么基于极端假设予以解决。为了缓解遮挡问题,我们建议检测遮挡区域,并在特征生成和匹配过程中明确排除那些区域。在本文中,我们介绍了一种称为姿势引导特征对齐(PGFA)的新方法,该方法利用姿势界标来从遮挡噪声中分离出有用的信息。在特征构建阶段,我们的方法利用人类地标生成关注图。生成的注意力图会指示特定的身体部位是否被遮挡,并指导我们的模型关注非遮挡区域。在匹配过程中,我们将全局特征明确划分为多个部分,并使用姿势界标来指示哪些部分特征属于目标人。仅将可见区域用于检索。此外,我们针对被遮盖人的Re-ID问题构建了一个大型数据集,即“被遮盖的-DukeMTMC”,这是迄今为止为遮挡人的Re-ID所提供的最大数据集。对我们构造的封闭re-id数据集,两个部分re-id数据集和两个常用的整体re-id数据集进行了广泛的实验。我们的方法在三个遮挡数据集上的性能大大优于现有的人员重新识别方法,而在两个整体数据集上仍保持最佳性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号