首页> 外文会议>International Conference on Computer Vision >Remote Heart Rate Measurement From Highly Compressed Facial Videos: An End-to-End Deep Learning Solution With Video Enhancement
【24h】

Remote Heart Rate Measurement From Highly Compressed Facial Videos: An End-to-End Deep Learning Solution With Video Enhancement

机译:通过高度压缩的面部视频进行远程心率测量:具有视频增强功能的端到端深度学习解决方案

获取原文

摘要

Remote photoplethysmography (rPPG), which aims at measuring heart activities without any contact, has great potential in many applications (e.g., remote healthcare). Existing rPPG approaches rely on analyzing very fine details of facial videos, which are prone to be affected by video compression. Here we propose a two-stage, end-to-end method using hidden rPPG information enhancement and attention networks, which is the first attempt to counter video compression loss and recover rPPG signals from highly compressed videos. The method includes two parts: 1) a Spatio-Temporal Video Enhancement Network (STVEN) for video enhancement, and 2) an rPPG network (rPPGNet) for rPPG signal recovery. The rPPGNet can work on its own for robust rPPG measurement, and the STVEN network can be added and jointly trained to further boost the performance especially on highly compressed videos. Comprehensive experiments are performed on two benchmark datasets to show that, 1) the proposed method not only achieves superior performance on compressed videos with high-quality videos pair, 2) it also generalizes well on novel data with only compressed videos available, which implies the promising potential for real-world applications.
机译:远程光电容积描记术(rPPG)旨在无接触地测量心脏活动,在许多应用中(例如远程医疗保健)具有巨大潜力。现有的rPPG方法依赖于分析面部视频的非常精细的细节,而这些细节很容易受到视频压缩的影响。在这里,我们提出了一种使用隐藏的rPPG信息增强和注意力网络的两阶段,端到端方法,这是对抗视频压缩损失并从高度压缩的视频中恢复rPPG信号的首次尝试。该方法包括两个部分:1)用于视频增强的时空视频增强网络(STVEN),以及2)用于rPPG信号恢复的rPPG网络(rPPGNet)。 rPPGNet可以独立工作以进行可靠的rPPG测量,并且可以添加STVEN网络并对其进行联合培训以进一步提高性能,尤其是在高度压缩的视频上。在两个基准数据集上进行了全面的实验,结果表明:1)所提出的方法不仅在具有高质量视频对的压缩视频上获得了卓越的性能,2)在只有压缩视频可用的新型数据上也得到了很好的推广,这意味着在现实世界中的应用前景广阔。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号