首页> 外文会议>International conference on computer information science;ICCIS 2012;ESTCON;World engineering, science technology congress >Half-Against-Half Multi-Class Support Vector Machines in classification of benthic macroinvertebrate images
【24h】

Half-Against-Half Multi-Class Support Vector Machines in classification of benthic macroinvertebrate images

机译:半底半大型多类支持向量机在底栖大型无脊椎动物图像分类中的应用

获取原文

摘要

In this paper we investigated how Half-Against-Half Support Vector Machine (HAH-SVM) succeed in the classification of the benthic macroinvertebrate images. Automated taxa identification of benthic macroinvertebrates is a slightly researched area and in this paper HAH-SVM was for the first time applied to this application area. The main problem in HAH-SVM is to find the right way to divide the classes in a node. We solved the problem by using two different approaches. Firstly, we applied the Scatter method which is a novel approach for the class division problem. Secondly, we formed the class divisions in an HAH-SVM by a random choice. We performed extensive experimental tests with four different feature sets and tested every feature set with seven different kernel functions. The tests showed that by the Scatter method and random choice formed HAH-SVMs performed from classification problem very well obtaining over 95% accuracy. Moreover, the 7D and 15D feature sets together with the RBF kernel function are good choices for this classification task. Generally speaking, HAH-SVM is a promising strategy for automated benthic macroinvertebrate identification.
机译:在本文中,我们研究了半反对半支持向量机(HAH-SVM)如何成功地对底栖大型无脊椎动物图像进行分类。底栖大型无脊椎动物的自动分类单元识别是一个研究较少的领域,本文首次将HAH-SVM应用于该应用领域。 HAH-SVM中的主要问题是找到在节点中划分类的正确方法。我们通过使用两种不同的方法解决了这个问题。首先,我们应用了Scatter方法,这是解决类划分问题的一种新颖方法。其次,我们通过随机选择在HAH-SVM中形成类划分。我们使用四个不同的功能集进行了广泛的实验测试,并使用七个不同的内核功能测试了每个功能集。测试表明,通过散布法和随机选择形成的HAH-SVM可以很好地解决分类问题,准确率超过95%。此外,7D和15D功能集以及RBF内核功能是此分类任务的不错选择。一般来说,HAH-SVM是用于底栖大型无脊椎动物自动识别的有前途的策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号