首页> 外文会议>International conference on computer information science;ICCIS 2012;ESTCON;World engineering, science technology congress >Using Committee Machine with Intelligent Systems for Permeability Prediction, A case study of South Pars Gas Field, Persian Gulf, Iran
【24h】

Using Committee Machine with Intelligent Systems for Permeability Prediction, A case study of South Pars Gas Field, Persian Gulf, Iran

机译:使用带有智能系统的委员会机进行渗透率预测,以伊朗波斯湾南帕尔斯气田为例

获取原文

摘要

Permeability is the ability of porous rock to transmit fluid. An accurate knowledge is necessary for reservoir management and development. This study presents an improved model based on the integration of petrographic data, conventional logs and intelligent systems to predict permeability. The permeability was first predicted using the individual intelligent systems including a neural network (NN), a fuzzy logic (FL) and a neuro-fuzzy (NF) model. Afterwards, a committee machine with intelligent systems (CMIS) was used in order to combine permeability values calculated from the individual intelligent systems. The CMIS using genetic algorithm (GA) model to obtain the optimal contribution of each expert. The results show that CMIS performed better than NN, FL and NF models acting alone. The proposed methodology was applied to South Pars gas field, which is located in the Persian Gulf between Iran and Qatar.
机译:渗透率是多孔岩石传输流体的能力。准确的知识对于油藏管理和开发是必要的。这项研究提出了一种改进的模型,该模型基于岩石学数据,常规测井和预测渗透率的智能系统的集成。首先使用包括神经网络(NN),模糊逻辑(FL)和神经模糊(NF)模型的单个智能系统预测渗透率。之后,使用了具有智能系统的委员会机(CMIS),以便合并从各个智能系统计算出的渗透率值。 CMIS使用遗传算法(GA)模型获得每个专家的最佳贡献。结果表明,CMIS的性能优于单独运行的NN,FL和NF模型。拟议的方法已应用于位于伊朗和卡塔尔之间的波斯湾的南帕尔斯气田。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号