首页> 外文会议>International Conference on Computer Engineering and Technology;ICCET 2010 >A Data Mining Approach for Dyslipidemia Disease Prediction Using Carotid Arterial Feature Vectors
【24h】

A Data Mining Approach for Dyslipidemia Disease Prediction Using Carotid Arterial Feature Vectors

机译:使用颈动脉特征向量预测血脂异常的数据挖掘方法

获取原文

摘要

In this paper,we proposed a useful methodology for the diagnosis of dyslipidemia disease by using novel various features of carotid arterial wall thickness. We measured and tested intima-media thickness of carotid arteries and used them as diagnostic feature vectors. In order to evaluate extracted various features,we tested on five classification methods and evaluated performance of classifiers. As a result,SVM and Neural Network algorithms (about 92%-98% goodness of fit) outperformed the other classifiers on those selected features.
机译:在本文中,我们提出了一种利用各种新的颈动脉壁厚度特征来诊断血脂异常疾病的有用方法。我们测量并测试了颈动脉的内膜中层厚度,并将其用作诊断特征向量。为了评估提取的各种特征,我们测试了五种分类方法并评估了分类器的性能。结果,在这些选定特征上,SVM和神经网络算法(约92%-98%的拟合优度)优于其他分类器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号