首页> 外文会议>International Conference on Computer Engineering, Network and Intelligent Multimedia >On The Comparison: Random Forest, SMOTE-Bagging, and Bernoulli Mixture to Classify Bidikmisi Dataset in East Java
【24h】

On The Comparison: Random Forest, SMOTE-Bagging, and Bernoulli Mixture to Classify Bidikmisi Dataset in East Java

机译:比较中:随机森林,SMOTE装袋和Bernoulli混合物对东爪哇省的Bidikmisi数据集进行分类

获取原文

摘要

The Bidikmisi is a scholarship program from the Indonesian government that intended for students who are not economically capable, but they have good academic performance. In the implementation of the Bidikmisi scholarship program, there are indications of a problem, namely the condition of inaccurate allocation in the Bidikmisi scholarship that is accepted or unaccepted. The purpose of this study was to examine several comparison methods that were used to get the accuracy allocation of the Bidikmisi scholarship in East Java. These methods include random forest, SMOTE-Bagging, and Bernoulli mixture model. Based on the AUC and g-mean values, the Bernoulli mixture method has a better proficiency than the random forest and SMOTE-Bagging.
机译:Bidikmisi是印度尼西亚政府颁发的一项奖学金计划,旨在为经济能力不强但学习成绩良好的学生提供服务。在实施Bidikmisi奖学金计划时,有迹象表明存在问题,即Bidikmisi奖学金分配不正确的条件是被接受还是未被接受。本研究的目的是研究几种比较方法,这些方法用于获得东爪哇省Bidikmisi奖学金的准确分配。这些方法包括随机森林,SMOTE装袋和伯努利混合模型。根据AUC和g-mean值,伯努利混合方法的熟练程度要高于随机森林和SMOTE装袋。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号