首页> 外文会议>International Conference on Computer Engineering, Network and Intelligent Multimedia >Spectral Analysis of Familiar Human Voice Based On Hilbert-Huang Transform
【24h】

Spectral Analysis of Familiar Human Voice Based On Hilbert-Huang Transform

机译:基于希尔伯特-黄变换的常用人声频谱分析

获取原文

摘要

Spectral analysis of human voice signals is important to reveal hidden information when is not available in the time-domain. Extracting spectral information from those voice signals will enhance our knowledge in understanding the nature and characteristic of the voice. It concerned with the decomposition method of voice signals into simpler components in frequency and time. The frequency analysis tools are also give beneficial for describing the spectral distribution in a voice signal, very often the methods used by the tools have limitations that restrict us to interpret the data properly. This paper describes a powerful data analysis method called the Hilbert-Huang transform (HHT), which can be used to extract audio frequency components from nonlinear and nonstationary human voice signals. It can describe the audio frequency components locally and adaptively for nearly any oscillating signal. This makes it very extremely versatile to be used for analysing familiar human voices.
机译:人类语音信号的频谱分析对于在时域中不可用时揭示隐藏的信息非常重要。从这些语音信号中提取频谱信息将增强我们在理解语音性质和特性方面的知识。它涉及将语音信号分解为频率和时间更简单的成分的方法。频率分析工具还有助于描述语音信号中的频谱分布,很多情况下,这些工具使用的方法都存在一些局限性,这些局限性限制了我们正确解释数据的能力。本文介绍了一种称为Hilbert-Huang变换(HHT)的强大数据分析方法,该方法可用于从非线性和非平稳人类语音信号中提取音频分量。它可以针对几乎所有振荡信号本地且自适应地描述音频分量。这使得它非常灵活,可用于分析熟悉的人类声音。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号