首页> 外文会议>International Conference on Computer Analysis of Images and Patterns >Enhancing Low Quality Face Image Matching by Neurovisually Inspired Deep Learning
【24h】

Enhancing Low Quality Face Image Matching by Neurovisually Inspired Deep Learning

机译:通过神经视觉启发式深度学习增强低质量的人脸图像匹配

获取原文

摘要

Computerized human face matching from low quality images is an active area of research in deformable pattern recognition especially in non-cooperative security, surveillance, authentication and multi-camera tracking. In low resolution and motion-blurry face images captured from surveillance cameras, it is challenging to get good match of faces and even extracting suitable feature vectors both in classical signal/image processing based and deep learning based approaches. In the current work, we have proposed a novel low quality face image matching algorithm in the light of a neuro-visually inspired method of figure-ground segregation (NFGS). The said framework is inspired by the nonlinear interaction between the classical receptive field (CRF) and its non-classical extended surround, comprising of the non-linear mean increasing and decreasing sub-units. The current work demonstrates not only better detection of low quality face images in NFGS enabled deep learning framework, but also it. prescribes an efficient way of low quality face image matching addressing low contrast, low resolution and motion blur which are prime responsible factors of making image low quality. The experimental results shows the effectiveness of proposed algorithm not only quantitatively but also qualitatively in terms of psycho-visual experiments and its statistical analysis outcome.
机译:来自低质量图像的计算机人脸匹配是可变形模式识别研究的活跃领域,尤其是在非合作安全性,监视,身份验证和多摄像机跟踪中。在从监视摄像机捕获的低分辨率和运动模糊的面部图像中,要获得良好的面部匹配,甚至在基于经典信号/图像处理的方法和基于深度学习的方法中提取合适的特征向量,都具有挑战性。在当前的工作中,我们提出了一种新颖的低质量人脸图像匹配算法,它是基于神经-视觉启发的图形-地面分离(NFGS)方法。所述框架的灵感来自经典感受野(CRF)与其非经典扩展包围之间的非线性相互作用,该包围包括非线性平均递增和递减子单元。当前的工作表明,不仅可以在启用了NFGS的深度学习框架中更好地检测低质量的人脸图像,而且还可以证明这一点。规定了解决低对比度,低分辨率和运动模糊的低质量人脸图像匹配的有效方法,这是使图像质量下降的主要原因。实验结果表明,从心理视觉实验及其统计分析结果来看,该算法不仅在定量上而且在定性上都是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号