首页> 外文会议>International Conference on Computer Analysis of Images and Patterns >Sound Transformation: Applying Image Neural Style Transfer Networks to Audio Spectograms
【24h】

Sound Transformation: Applying Image Neural Style Transfer Networks to Audio Spectograms

机译:声音转换:将图像神经样式传输网络应用于音频频谱图

获取原文

摘要

Image style transfer networks are used to blend images, producing images that are a mix of source images. The process is based on controlled extraction of style and content aspects of images, using pre-trained Convolutional Neural Networks (CNNs). Our interest lies in adopting these image style transfer networks for the purpose of transforming sounds. Audio signals can be presented as grey-scale images of audio spectrograms. The purpose of our work is to investigate whether audio spectrogram inputs can be used with image neural transfer networks to produce new sounds. Using musical instrument sounds as source sounds, we apply and compare three existing image neural style transfer networks for the task of sound mixing. Our evaluation shows that all three networks are successful in producing consistent, new sounds based on the two source sounds. We use classification models to demonstrate that the new audio signals are consistent and distinguishable from the source instrument sounds. We further apply t-SNE cluster visualisation to visualise the feature maps of the new sounds and original source sounds, confirming that they form different sound groups from the source sounds. Our work paves the way to using CNNs for creative and targeted production of new sounds from source sounds, with specified source qualities, including pitch and timbre.
机译:图像样式传输网络用于混合图像,生成混合了源图像的图像。该过程基于使用预训练的卷积神经网络(CNN)的图像样式和内容方面的受控提取。我们的兴趣在于采用这些图像样式传输网络来转换声音。音频信号可以表示为音频频谱图的灰度图像。我们工作的目的是研究音频频谱图输入是否可以与图像神经传递网络一起使用以产生新的声音。使用乐器声音作为源声音,我们应用并比较了三个现有的图像神经样式传递网络来进行混音任务。我们的评估表明,所有三个网络都成功地基于两个源声音产生了一致的新声音。我们使用分类模型来证明新的音频信号与源乐器的声音是一致且可区分的。我们进一步应用t-SNE集群可视化来可视化新声音和原始源声音的特征图,确认它们与源声音形成了不同的声音组。我们的工作为使用CNN从具有特定音源质量(包括音高和音色)的源声音中创造性地,有针对性地产生新声音铺平了道路。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号