首页> 外文会议>International Conference on Computational Semantics >Predicate-specific Annotations for Implicit Role Binding: Corpus Annotation, Data Analysis and Evaluation Experiments
【24h】

Predicate-specific Annotations for Implicit Role Binding: Corpus Annotation, Data Analysis and Evaluation Experiments

机译:隐式角色绑定的谓词特定注释:语料库注释,数据分析和评估实验

获取原文

摘要

Current research on linking implicit roles in discourse is severely hampered by the lack of sufficient training resources, especially in the verbal domain: learning algorithms require higher-volume annotations for specific predicates in order to derive valid generalizations, and a larger volume of annotations is crucial for insightful evaluation and comparison of alternative models for role linking. We present a corpus of predicate-specific annotations for verbs in the FrameNet paradigm that are aligned with PropBank and VerbNet. A qualitative data analysis leads to observations regarding implicit role realization that can guide further annotation efforts. Experiments using role linking annotations for five predicates demonstrate high performance for these target predicates. Using our additional data in the SemEval task, we obtain overall performance gains of 2-4 points F_1 -score.
机译:缺乏足够的培训资源,尤其是在言语领域,严重阻碍了当前关于话语中隐性角色链接的研究:学习算法需要对特定谓词使用大量注释,以得出有效的概括,而大量注释是至关重要的对角色链接的替代模型进行深入的评估和比较。我们为FrameNet范式中与PropBank和VerbNet对齐的动词提供了谓词特定的注解。定性数据分析可以得出有关隐式角色实现的观察结果,从而可以指导进一步的注释工作。使用针对五个谓词的角色链接注释的实验证明了这些目标谓词的高性能。使用SemEval任务中的其他数据,我们获得了2-4点F_1-得分的总体性能提升。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号