首页> 外文会议>International Conference on Computational Science and its Applications >Human Action Recognition Using Convolutional Neural Networks with Symmetric Time Extension of Visual Rhythms
【24h】

Human Action Recognition Using Convolutional Neural Networks with Symmetric Time Extension of Visual Rhythms

机译:使用具有视觉节奏对称时间扩展的卷积神经网络进行人体动作识别

获取原文

摘要

Despite the expressive progress of deep learning models on the image classification task, they still need enhancement for efficient human action recognition. One way to achieve such gain is to augment the existing datasets. With this goal, we propose the usage of multiple Visual Rhythm crops, symmetrically extended in time and separated by a fixed stride. The symmetric extension preserves the video frame rate, which is crucial to not distort actions. The crops provide a 2D representation of the video volume matching the fixed input size of the 2D Convolutional Neural Network (CNN) employed. In addition, multiple crops with stride guarantee coverage of the entire video. Aiming to evaluate our method, a multi-stream strategy combining RGB and Optical Flow information is extended to include the Visual Rhythm. Accuracy rates fairly close to the state-of-the-art were obtained from the experiments with our method on the challenging UCF101 and HMDB51 datasets.
机译:尽管深度学习模型在图像分类任务上表现出明显的进步,但它们仍需要增强以实现有效的人类动作识别。获得这种收益的一种方法是扩充现有数据集。为了这个目标,我们建议使用多种视觉节奏作物,它们在时间上对称地延伸,并以固定的步幅分开。对称扩展保留了视频帧速率,这对于不扭曲动作至关重要。作物提供与所使用的2D卷积神经网络(CNN)的固定输入大小相匹配的视频量的2D表示。另外,大步向前的多种作物保证了整个视频的覆盖范围。为了评估我们的方法,结合了RGB和光流信息的多流策略被扩展为包括视觉节奏。使用我们的方法在具有挑战性的UCF101和HMDB51数据集上进行的实验,获得了非常接近最新技术的准确率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号