首页> 外文会议>International Conference on Computational Intelligence and Knowledge Economy >Investigating the Performance of Machine Learning Algorithms for Improving Fault Tolerance for Large Scale Workflow Applications in Cloud Computing
【24h】

Investigating the Performance of Machine Learning Algorithms for Improving Fault Tolerance for Large Scale Workflow Applications in Cloud Computing

机译:研究机器学习算法的性能以提高云计算中大型工作流应用程序的容错能力

获取原文

摘要

Cloud platform is emerging distributed system mainly used to host applications from the client side. Maintenance of user’s data and execution of client’s application with the help of hardware, software and network resources are allowed in cloud distributed environment. In this era, modern cloud data centers are used for hosting many non-commercial applications used in scientific field. Cloud being a distributed platform, many errors and fault can occur. In such a distributed environment it becomes difficult to identify errors and faults. Hence there is a high requirement for implementation of fault tolerance mechanism in cloud platform. This mechanism ensures that although the failure occurs in cloud the client’s data are not affected in any manner. Cloud’s performance can be improved by ensuring users their on-demand services as required with the help of fault tolerance mechanisms. In this research work the comparative analysis of three machine learning algorithms K-Means, Decision Tree and KNN (K Nearest Neighbors) algorithm for different structures of scientific workflow applications such as Pipeline, Merge, Split, Diamond using parameters like Sensitivity and Specificity are discussed.
机译:云平台是新兴的分布式系统,主要用于从客户端托管应用程序。在云分布式环境中,允许在硬件,软件和网络资源的帮助下维护用户数据并执行客户端应用程序。在这个时代,现代云数据中心用于托管科学领域中使用的许多非商业应用程序。云是一个分布式平台,可能会发生许多错误和故障。在这样的分布式环境中,识别错误和故障变得困难。因此对在云平台上实施容错机制提出了很高的要求。这种机制可确保尽管故障发生在云中,但客户端数据不会受到任何影响。通过容错机制确保用户按需提供按需服务,可以提高云的性能。在这项研究工作中,讨论了三种机器学习算法K-Means,决策树和KNN(K最近邻)算法针对科学工作流应用程序不同结构(例如管道,合并,拆分,菱形)的比较分析,并使用诸如敏感性和特异性之类的参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号