首页> 外文会议>International Conference on Computational Intelligence and Knowledge Economy >Application of Data Mining Approach for Profiling Fire Incidents Reports of Bureau of Fire and Protection
【24h】

Application of Data Mining Approach for Profiling Fire Incidents Reports of Bureau of Fire and Protection

机译:数据挖掘方法在消防局消防事故报告分析中的应用

获取原文

摘要

The study aims to create a fire model that can generate pattern to obtain profile of fire incidents in Manila that can help facilitate the assessment of fire incidents by providing a quick, thorough, and scientific analysis of fire data, the outputs of which in turn can be utilized as basis for the formulation of new programs and fire prevention activities. The researchers applied K-means clustering approach and Elbow method using Python scikit-learn tool to process the fire incidents dataset and produce the number of clusters with centroid and correlation heatmap which resulted to five clusters. The most noticeable result is the 'Day' attribute, Wednesday and Thursday, which are similar across all five clusters. In addition, most fire incidents occurred between 12:00 NN to 4:00 PM, around lunchtime and afternoon siesta. The result also shows that the poor are the most vulnerable likewise, the middle class. It concludes that government can reconsider its services on fire protection issues and fire disaster management. Data mining techniques applied to fire incident reports was limited in the Philippines. With this. more work should be carried out using prediction which can help in predicting the presence of a fire incident so that firefighter could immediately respond.
机译:该研究旨在创建一个火灾模型,该模型可以生成模式以获取马尼拉火灾事件的概况,通过提供快速,彻底和科学的火灾数据分析来帮助促进火灾事件的评估,而火灾数据的输出又可以用作制定新计划和开展防火活动的基础。研究人员使用Python scikit-learn工具将K-means聚类方法和Elbow方法应用于火灾事件数据集,并生成具有质心和相关热图的聚类数,从而得到五个聚类。最明显的结果是星期三和星期四的“天”属性,这在所有五个群集中都相似。此外,大多数火灾事故发生在中午12:00到下午4:00之间,大约在午餐时间和午休。结果还表明,穷人也是最容易受到伤害的中产阶级。结论是政府可以重新考虑在消防问题和火灾管理方面的服务。在菲律宾,用于火灾事故报告的数据挖掘技术受到限制。有了这个。应该使用预测进行更多的工作,这可以帮助预测火灾的发生,以便消防人员可以立即做出反应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号