首页> 外文会议>International Conference on Computational Intelligence Communication Technology >Sequential square root filtering for measuring tractor driving wheel slip rate
【24h】

Sequential square root filtering for measuring tractor driving wheel slip rate

机译:顺序平方根滤波用于测量拖拉机驱动轮滑移率

获取原文

摘要

Adaptive sequential square root Kalman filtering (ASSRKF) algorithm is purposed to measure slip rate of wheel tractor online. The filtering process is formulated as a process of recursive the Kalman state model, where signals from wheel speed sensors, angular acceleration, GPS and accelerometer are fused. The principal advantages of combining sequential processing with square root algorithm are enhancing numerical accuracy and lowering storage requirements, thus removing the limitation of the computing capabilities of the embedded control system on the Kalman filter algorithm. On the basis of the sequential square root algorithm, the paper further propose formulas for the parallel fusion of data and adaptive filtering, so that the phenomenon of covariance matrix being unable to be inversed is avoided and real-time wheel slip rate can be obtained without the statistical law of the prior error. Both the simulation and the experimental results indicate that those presented in this paper are efficient.
机译:自适应序列平方根卡尔曼滤波(ASSRKF)算法旨在在线测量轮式拖拉机的滑移率。滤波过程被公式化为递归卡尔曼状态模型的过程,其中融合了来自车轮速度传感器,角加速度,GPS和加速度计的信号。将顺序处理与平方根算法相结合的主要优点是可以提高数值精度并降低存储要求,从而消除了嵌入式控制系统对Kalman滤波算法的计算能力的限制。在顺序平方根算法的基础上,进一步提出了数据与自适应滤波并行融合的公式,从而避免了协方差矩阵不可逆的现象,而无需求取实时车轮滑移率。先验误差的统计定律。仿真和实验结果均表明本文提出的方法是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号