首页> 外文会议>International Conference on Computational Electromagnetics >Deep Learning of Raw Radar Echoes for Target Recognition
【24h】

Deep Learning of Raw Radar Echoes for Target Recognition

机译:深度雷达回波深度学习的目标识别

获取原文

摘要

Synthetic aperture radar (SAR) based classification approaches are commonly used methods for automatic target recognition. However, SAR imaging requires complex two-dimensional matched filtering and interpolation algorithms. In this paper, we propose deep learning technology for automatic target recognition based on raw radar echoes instead of SAR images. A modern convolutional neural network (CNN) model is trained directly by radar-echo training data set, and is evaluated on the testing data set. The experimental results show that the proposed method could achieve high accuracy and efficiency for the target recognition.
机译:基于合成孔径雷达(SAR)的分类方法是自动目标识别的常用方法。但是,SAR成像需要复杂的二维匹配滤波和插值算法。在本文中,我们提出了一种基于原始雷达回波而不是SAR图像的深度学习技术,用于自动目标识别。现代卷积神经网络(CNN)模型由雷达回波训练数据集直接训练,并在测试数据集上进行评估。实验结果表明,该方法可以达到较高的目标识别精度和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号